

Modular Thermocouple Amplifier

User Manual

Michigan Scientific

Copyright © 2022 Michigan Scientific Corporation

Details and specifications provided in this document are purely for informational purposes and are subject to alterations. No liability is accepted for errors or omissions.

Michigan Scientific Corporation 8500 Ance Road Charlevoix, MI 49720

Revision Date: October 31, 2022 8:30 a.m. twnachazel

Contents

Introduction	1
Operation	2
Installation	4
Linearization Formulas	7
Troubleshooting	8
Creating a Model Number	9
Drawings and Pin Diagrams	10

Modular Thermocouple Amplifier...

- Available with one to nine thermocouple amplifier channels.
- Provides cold junction compensation.
- Amplified signal is at high-level voltage.
- Precision, low noise, differential amplifier.
- Units available in K and T types (other types made by special order).
- Signal is greatly immune to external noise sources.
- Wide signal bandwidth.
- SR-Series Slip Ring Assembly rotors pilot onto the amplifiers.
- Amplifiers are stackable for multiple channel use.

Operation

SPECIFICATIONS			
Parameter	Specification		
Output	Output is not linearized over temperature, if necessary, the output may be linearized externally.		
Range	± 10 V Max		
Sensitivity at 25 °C TC Temperature	10 mV/°C		
Capacitive Load	1000 pF Max		
Temperature Error	Includes errors due to cold junction compensator.		
Initial at 25 °C Case Temperature	± 2 °C Max		
-25°C to +85 °C Case Temperature	± 3 °C Max		
-55 °C to +125 °C Case Temperature	± 5 °C Max		
Noise	Referred to input of amplifier.		
0.01 Hz - 10 Hz	0.8 µV р-р		
Dynamic Response			
Frequency Response	1.5 kHz		
Slew Rate	0.4 V/µs		
Settling Time 0.1% / 0.01%	40 μs/50 μs		
Power Requirements			
Voltage	± 15 Vdc		
Quiescent Current	± 45 mA Max Total (9 channels)		
Environment			
Specification	-25 °C to +85 °C (-13 °F to +185 °F)		
Operation	-55 °C to +125 °C (-67 °F to +257 °F)		

General Operation

The Modular Thermocouple Amplifier (AMP-TC) must be powered with \pm 15 V and a common. See the Installation section for instructions on how to connect these supplies to the proper terminals. The AMP-TC signals should be measured with respect to the common gray terminal.

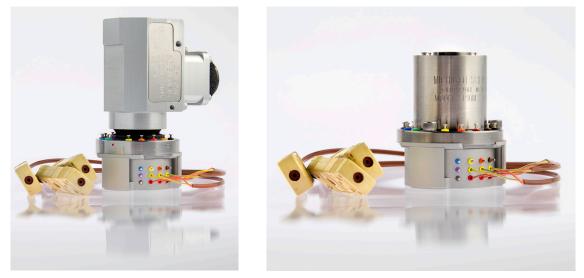
Current flows in the ground line, so there will be a voltage drop along the length of the conductor. This will create an offset if the signals are measured with respect to the common at the power supply. Michigan Scientific recommends signals should be measured with respect to the common terminal at the amplifier. This can be accomplished by adding a second common line from the amplifier to the recording device.

A thermocouple should be attached to the provided mating connector (Omega® SMP-*-M) and plugged into the connector on the amplifier (Omega® SMP-*-F). If a thermocouple input is left unused or if the thermocouple opens, the output of the amplifier will saturate negatively (near –13.5 V). The amplifier will not be damaged if a thermocouple is left unattached.

The signal from the thermocouple is cold junction compensated and amplified, but not linearized. Linearization polynomials can be found in the Linearization Formulas section.

Operation with PS Series Power Supplies

Any Michigan Scientific Power Supply will provide the \pm 15 V and common. These Power Supplies have switches that control bridge excitation and shunt calibration. Both switches are used with Michigan Scientific's Strain Gage Amplifiers, and have no impact on the operation of the thermocouple amplifier.


Michigan Scientific Power Supplies reverse the polarity of the \pm 15 V terminals when the bridge excitation switch is off. The thermocouple amplifier will continue to work under this condition

Installation

Mechanical Installation

Michigan Scientific SR-Series Slip Ring Assemblies are designed to pilot the Modular Thermocouple Amplifiers. The amplifier can mount directly to the rotating shaft, or an adapter may be used to mount the amplifier to the shaft. The pilot for the amplifier should have a minimum depth of 0.05 in [1.3 mm] and be machined for flatness and concentricity so that the adapter properly interfaces with the amplifier. Amplifier drawing specifications can be found in the Appendix.

Three #8 socket head cap screws should be tightened to no more than 45 in·lb to secure the amplifier.

The total indicated runout is <0.003 inches (0.08 mm) per module. Using a pilot will reduce runout better than bolts through the mounting holes alone.

The module is not waterproof. Michigan Scientific does manufacture a slip ring and amplifier cover. Please contact factory for specifications.

Electrostatic Sensitivity

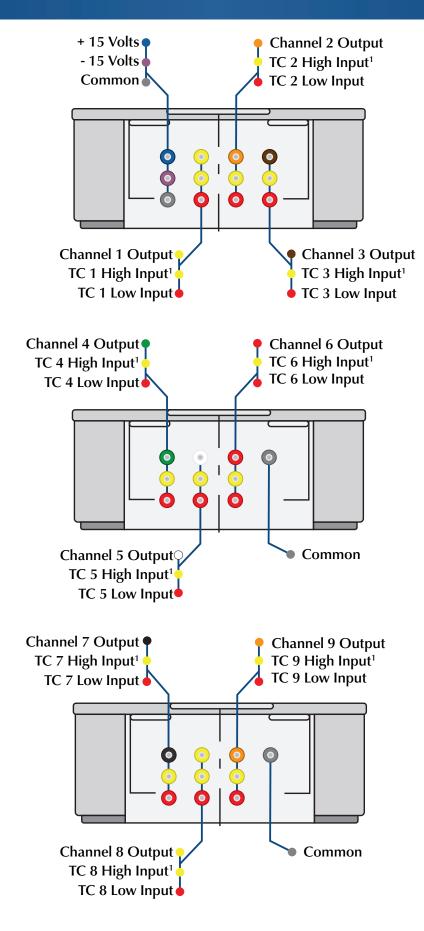
AMP-TC is an electrostatic sensitive device. The terminals should not be touched except during soldering. Soldering should be performed at an electrostatic discharge protected workstation.

Wires attached to terminals should not be touched.

If an electrostatic discharge protected workstation is not available, use a grounded wrist-strap and ground the thermocouple amplifier.

Electrical Installation

Solder terminals on the Modular Thermocouple Amplifier are color coded to help determine which supply or signal corresponds to which terminal.


TERMINAL SIGNALS¹

	Signals	Terminals
	Positive 15 V	Blue 💿
Power Supply	Negative 15 V	Violet 🖸
	Common	Gray 💽
Slip Ring Connections	Amplifier Out High Channel 1	Yellow 📀
	Amplifier Out High Channel 2	Orange 📀
	Amplifier Out High Channel 3	Brown 🖸
	Amplifier Out High Channel 4	Green 💽
	Amplifier Out High Channel 5	White •
	Amplifier Out High Channel 6	Red 📀
	Amplifier Out High Channel 7	Black 🖸
	Amplifier Out High Channel 8	Yellow 📀
	Amplifier Out High Channel 9	Orange 📀
Thermocouple	Thermocouple Positive ²	Yellow 📀
Connections	Thermocouple Negative	Red 📀

¹For a specific thermocouple type, see appendix

²Yellow for Type K, Blue for Type T

The output high is measured relative to the common (gray) terminal. There are multiple commons on high channel count amplifiers. Michigan Scientific recommends that a separate wire for signal common be added to one or more of the common terminals to reduce errors from voltage drops along the power common wire. This wire can be added to the stator of a slip ring to decrease the amount of rings needed, but care should be given to physically place the amplifier and slip ring as close as possible to the thermocouple.

///

Linearization Formulas

The AMP-TC cold junction compensates and amplifies thermocouple signals but it does not linearize the signals. The polynomials given below use raw voltage from the amplifier as the independent variable and generate temperature in degrees Celsius.

Higher order polynomials are accurate over wider temperature ranges. Reducing the number of significant digits reduces the accuracy. Each of the following formulas are accurate to less than one degree Celsius over the temperature range specified. The cold junction compensator can create an additional error, which is dependent upon the case temperature of the amplifier (see specifications, temperature error). These polynomials are inaccurate outside their specified temperature ranges.

K Type

Temperature Range: 0 °C to 100 °C

T = 98.9V + 0.464

Temperature Range: -100 °C to 200 °C

 $\mathsf{T} = 2.949 \mathsf{V}^3 - 7.916 \mathsf{V}^2 + 104.1 \mathsf{V} + 0.0289$

Temperature Range: 0 °C to 1370 °C

 $\mathsf{T} = 2.5499\mathsf{E}\text{-}4\mathsf{V}^6 - 1.1161\mathsf{E}\text{-}2\mathsf{V}^5 + 0.18766\mathsf{V}^4 - 1.3957\mathsf{V}^3 + 4.0742\mathsf{V}^2 + 95.47\mathsf{V} + 0.91578$

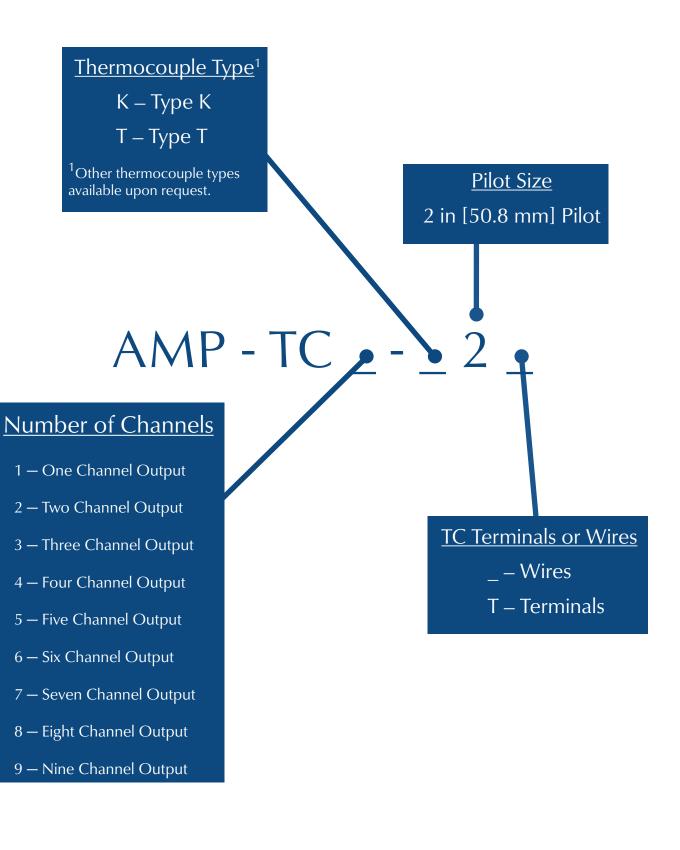
T = Temperature in °C

V = Voltage from amplifier

T Type

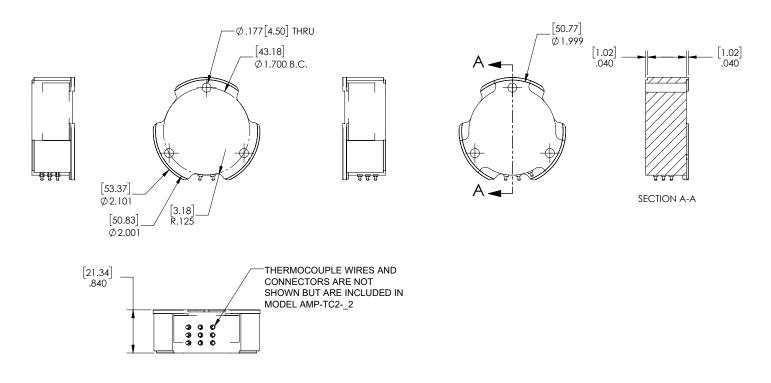
Temperature Range: -100 °C to 400 °C

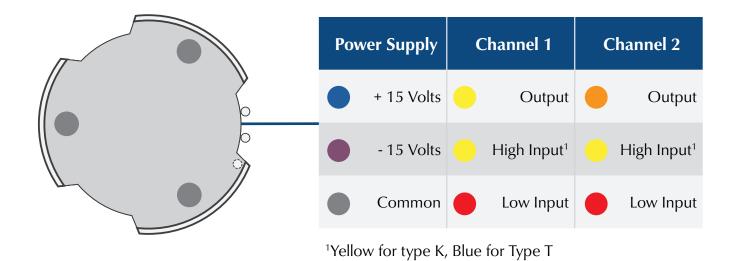
 $\mathsf{T}{=}\ \textbf{-}0.0090\mathsf{V}^{6} + 0.151\mathsf{V}^{5} - 1.040\mathsf{V}^{4} + 4.149\mathsf{V}^{3} - 13.436\mathsf{V}^{2} + 105.278\mathsf{V} + 0.142$

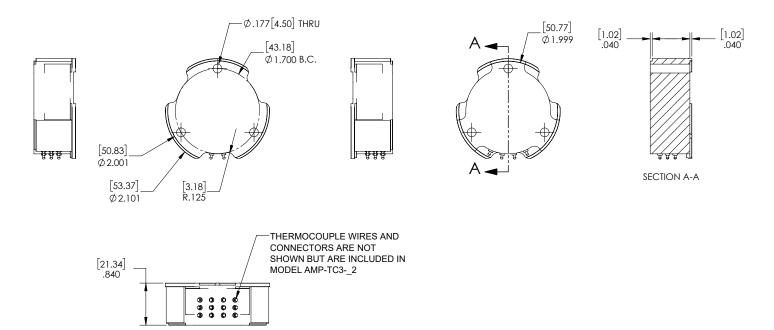

T = Temperature in °C

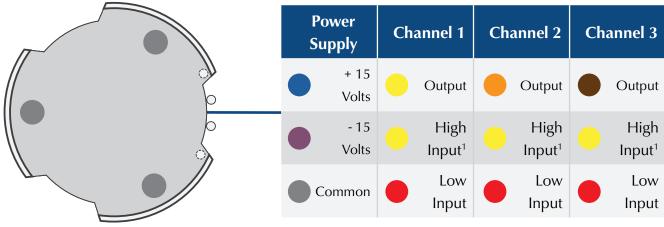
V = Voltage from amplifier

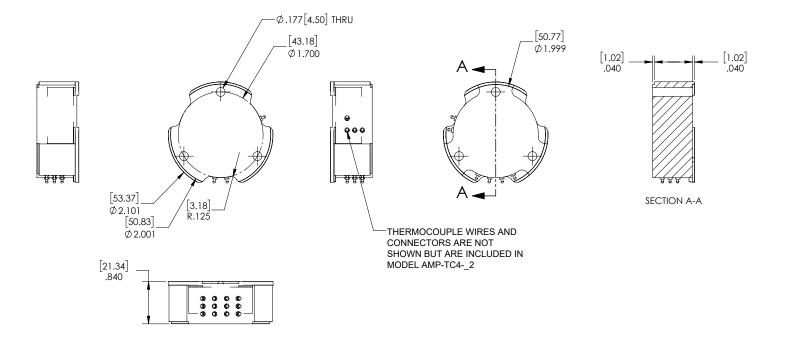
Troubleshooting

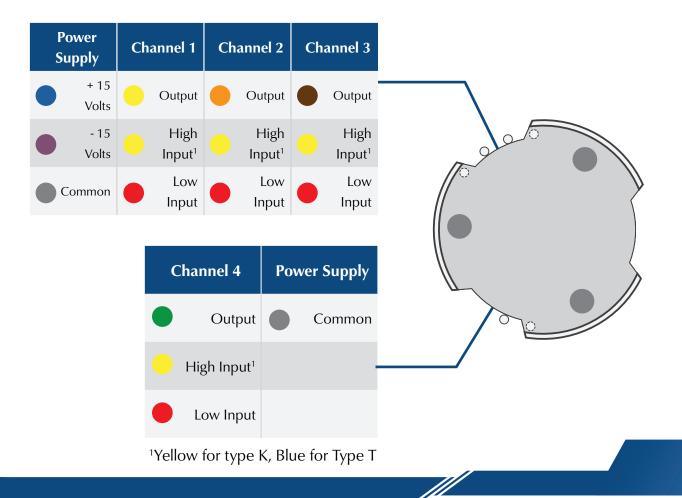

Problem	Potential Cause	Test to Verify Problem	Solution	
Output saturated near -13.5 V.	Open thermocouple.	Connect known good thermocouple to amplifier input. If saturated voltage is a result open thermocouple; the output should now be near room temperature.	Repair thermocouple junction.	
Output noisy with thermocouple spinning.	Thermocouple could be opening momentarily;Look at dynamic signalfrequency response of data acquisition system may be too slow to show complete drop out of signal.Look at dynamic signal		Repair thermocouple junction Restrain thermocouple better.	
Output near 0 V regardless of thermocouple	Amplifier Out High could be shorted to Common.	With amplifier power off, measure resistance from Amplifier Out High to Common. The resistance should be greater than 1 MΩ.	Remove short.	
temperature.	Amplifier Out High conductor could be open.	Measure resistance from one end of conductor to the other.	Repair open wire.	
Output has an Voltage drop along Common undesired offset. wire offsets measurement.		Measure voltage from Amplifier Out High to Common at amplifier.	Add a wire from the common at the amplifier. Measure signal relative to this common. There should be minimal current in this conductor.	
Output near 11 V when thermocouple is at room temperature.	- 15 V supply is disconnected.	Measure continuity from power supply to amplifier's Violet terminal.	Repair broken wire.	
Output near -2.2 V when thermocouple is at room temperature.	+ 15 V supply is disconnected.	Measure continuity from power supply to amplifier's Blue terminal.	Repair broken wire.	
Output near -0.5 V when thermocouple is at room temperature.	Common is disconnected.	Measure continuity from power supply to amplifier's Grey terminal.	Repair broken wire.	

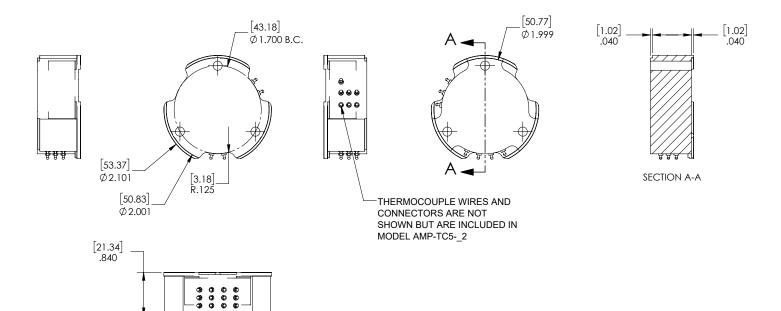

Creating a Model Number

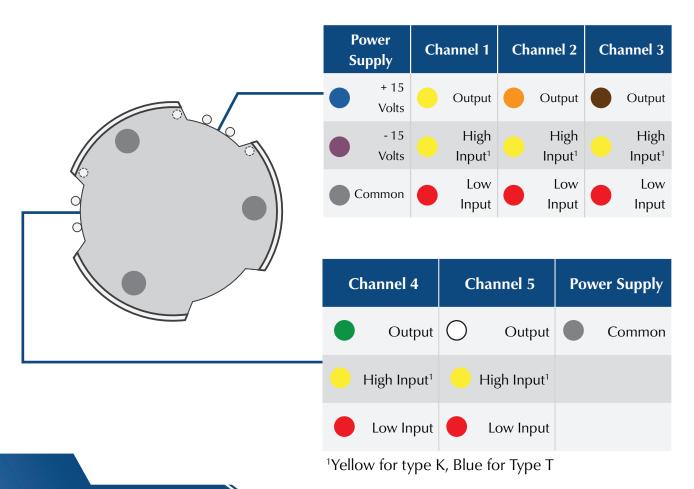

Drawings and Pin Diagrams

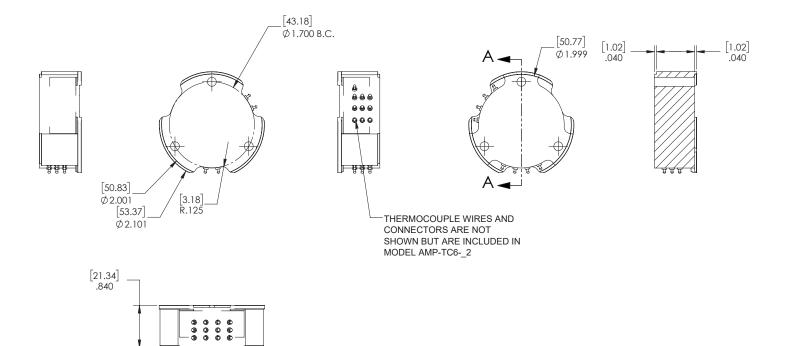

AMP-TC2-_2 Customer Drawing


AMP-TC3-_2 Customer Drawing



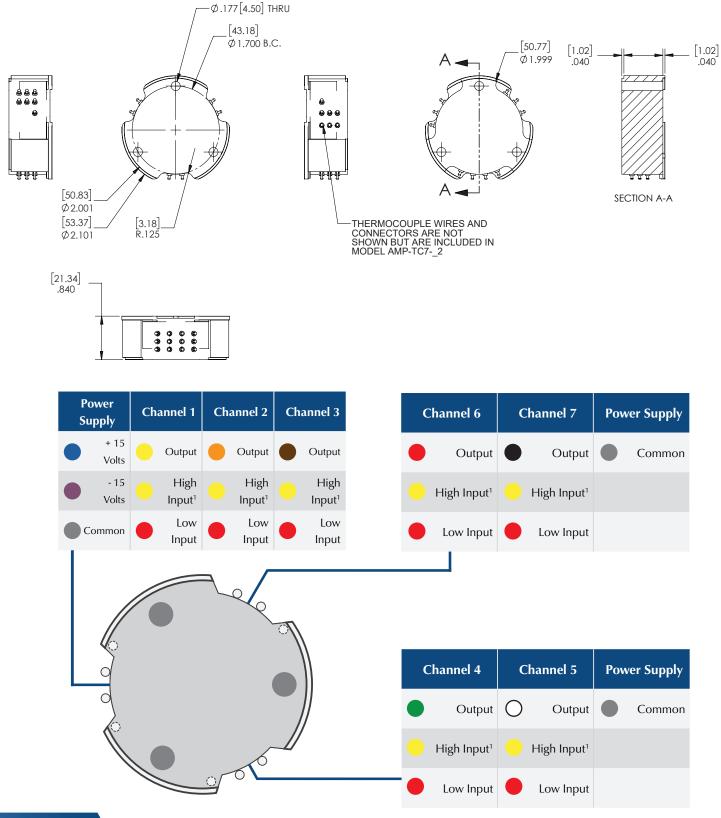

¹Yellow for type K, Blue for Type T


AMP-TC4-_2 Customer Drawing



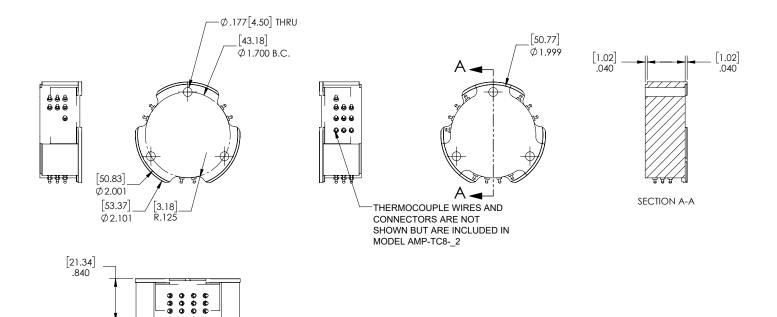
AMP-TC5-_2 Customer Drawing

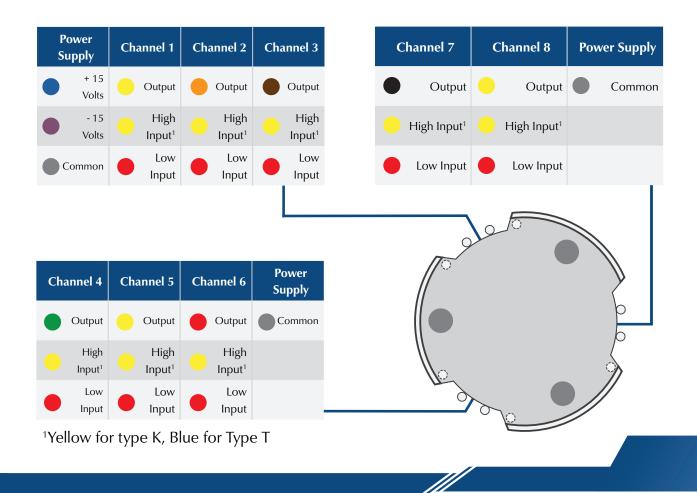
AMP-TC6-_2 Customer Drawing

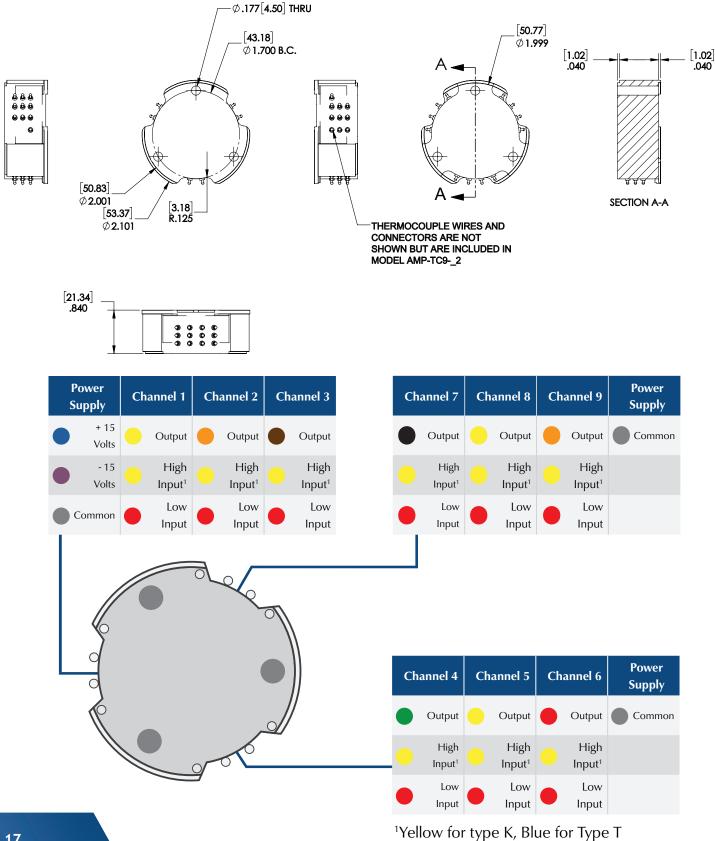


Power Supply	Channel 1	Channel 2	Channel 3	
+ 15 Volts	Output	Output	Output	
- 15	High	High	High	
Volts	Input ¹	Input ¹	Input ¹	
Common	Low	Low	Low	
	Input	Input	Input	

Ch	Channel 4		Channel 5 Channel 6		Channel 5		Power Supply
	Output	\bigcirc	Output		Output	Common	
	High Input ¹		High Input¹		High Input¹		
	Low Input		Low Input		Low Input		


¹Yellow for type K, Blue for Type T


AMP-TC7-_2 Customer Drawing


¹Yellow for type K, Blue for Type T

AMP-TC8-_2 Customer Drawing

AMP-TC9-_2 Customer Drawing

